Myeloma cells suppress osteoblasts through sclerostin secretion
نویسندگان
چکیده
Wingless-type (Wnt) signaling through the secretion of Wnt inhibitors Dickkopf1, soluble frizzled-related protein-2 and -3 has a key role in the decreased osteoblast (OB) activity associated with multiple myeloma (MM) bone disease. We provide evidence that another Wnt antagonist, sclerostin, an osteocyte-expressed negative regulator of bone formation, is expressed by myeloma cells, that is, human myeloma cell lines (HMCLs) and plasma cells (CD138+ cells) obtained from the bone marrow (BM) of a large number of MM patients with bone disease. We demonstrated that BM stromal cells (BMSCs), differentiated into OBs and co-cultured with HMCLs showed, compared with BMSCs alone, reduced expression of major osteoblastic-specific proteins, decreased mineralized nodule formation and attenuated the expression of members of the activator protein 1 transcription factor family (Fra-1, Fra-2 and Jun-D). Moreover, in the same co-culture system, the addition of neutralizing anti-sclerostin antibodies restored OB functions by inducing nuclear accumulation of β-catenin. We further demonstrated that the upregulation of receptor activator of nuclear factor κ-B ligand and the downregulation of osteoprotegerin in OBs were also sclerostin mediated. Our data indicated that sclerostin secretion by myeloma cells contribute to the suppression of bone formation in the osteolytic bone disease associated to MM.
منابع مشابه
Osteogenic Inhibition in Multiple Myeloma
OBJECTIVE Multiple myeloma (MM) is a plasma cell malignancy where plasma cells are increased in the bone marrow (BM) and usually do not enter peripheral blood, but produce harmful factors creating problems in these patients (e.g. malignant plasma cells over activate osteoclasts and inhibit osteoblasts with factors like RANKL and DKK). These factors are a main cause of bone lesion in MM patients...
متن کاملRegulation of Sclerostin Expression in Multiple Myeloma by Dkk-1: A Potential Therapeutic Strategy for Myeloma Bone Disease.
Sclerostin is a potent inhibitor of osteoblastogenesis. Interestingly, newly diagnosed multiple myeloma (MM) patients have high levels of circulating sclerostin that correlate with disease stage and fractures. However, the source and impact of sclerostin in MM remains to be defined. Our goal was to determine the role of sclerostin in the biology of MM and its bone microenvironment as well as in...
متن کاملSclerostin is a delayed secreted product of osteocytes that inhibits bone formation.
Osteocytes are the most abundant cells in bone and are ideally located to influence bone turnover through their syncytial relationship with surface bone cells. Osteocyte-derived signals have remained largely enigmatic, but it was recently reported that human osteocytes secrete sclerostin, an inhibitor of bone formation. Absent sclerostin protein results in the high bone mass clinical disorder s...
متن کاملHepatocyte growth factor (HGF) induces interleukin-11 secretion from osteoblasts: a possible role for HGF in myeloma-associated osteolytic bone disease.
Multiple myeloma is associated with unbalanced bone remodeling causing lytic bone lesions. Interleukin-11 (IL-11) promotes osteoclast formation and inhibits osteoblast activity and may, thus, be one factor involved in cancer-induced bone destruction. We have previously shown that myeloma cells produce hepatocyte growth factor (HGF). We now report that HGF induces IL-11 secretion from human oste...
متن کاملMechanical stimulation in vivo reduces osteocyte expression of sclerostin.
Osteocytes are by far the most numerous cell type in bone. Their population density, distribution, extensive communication networks, and fluid-filled lacuno-canalicular environment make these cells ideal mechanosensors in bone’s adaptive process. Despite these attributes, very little data have been generated that implicate the osteocyte network as the primary mechanosensory cell type, to the ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2011